Thin bottom flow cell, 75x25mm, 50µm channel height

SKU
11003545
Availability:
check_circle In stock
$740.77

per pack of 2

Pack of 2, Microscope slide format (75x25mm), Thin botom flow cells, channel height 50µm

Application possibilities

A flow cell / observation cell is a sample cell designed so that liquids sample, for instance containing cell’s, proteins or particles, can be continuously flowed though a observation area.
Our glass flow’s cell are intended for situation where the optical properties are extremely critical and are suitable for high resolution imaging. They are often used in combination with fluorescent markers.

As alternative to continuously flowed sample it’s also possible to apply stopped flow observation by adding pressure control on both the cell inlet and outlet.   

Research examples can be for instance:

  • In-line sampling of liquids, mostly using a optical read out.
  • Cell observation / counting
  • Measurement of fluorescent response.  
  • Combined with surface chemistry they are used as base for NGS technology (Next-Generation Sequencing)

Unique selling point

  • The channels doesn’t have any substantial roughness and are fully optical transparent due to the etching process used.
  • Glass offers sublime optical transparency and low autofluorescence.
  • D263-Bio is the material of choice for when fluorescent markers are used, this material featurea a very low autofluorescence also above 600nm.
  • The bottom layer thickness (thickness from bottom face up to the channel) is comparable with a #1.5 coverslip
  • Optionally available with a hydrophobic or APTES coating.
  • The miscroscope slide format (75x25mm) offers compared to a 45x15mm format:
    • more channels per chips (5 instead of 3)
    • longer observation length (+30mm)

Product configurations

SKU Channel 1 width Channel 2 width Channel 3 width Channel 4 width Channel 5 width Channel height (all channels) Coating
11003545 1400µm 1900µm 2900µm 1900µm 1400µm 50µm Non, hydrophobic

Interfacing
This product requires an alternative insert set for use in combination with our Fluidic connect Pro holder.
To connect all three channels at the same time, you need 10 ferrules. The ferrules are available in sets of five. Make sure you order two sets if you want to connect all channels at the same time. 

More Information
Unit of measurementpack of 2
Interface typeTopconnect
Chip materialBorosilicate glass - D263 bio
Number of inlets5
Number of outlets5
Supply format & dimensions

75x25mm

Icon Label Description Type Size Download
PDF Drawing FC 7525.50.3 Technical drawing for 75x25mm flow cell, 50µm deep. PDF 133.7 KB Download
Customer Questions
How do I clean my uncoated chips?
1) Flush an alkaline solution through the channels, like 1 M sodium hydroxide in water. 2) A water bath with ultrasonic agitation can be used to remove particulated matters, keep energy levels initially low to prevent potential damages. 3) Glass microchips can be heated (e.g. 400°C) causing any organic material on the glass surface to degrade. Try to use lower temperatures first because burning the content could make it stick. 4) Concentrated sulfuric acid works well to dissolve organic material, such as fibres, that are difficult to remove with alkaline solutions.
I need a pumping system for my setup. Which one do you recommend?
We recommend using a high precision pumping system. Regular syringe pumps often don't work very well for droplet generators. There are several high precision pumping systems on the market that work with different pumping principles.To name one, we'd like to mention that we have had positive experiences with the equipment Fluigent offers. https://www.fluigent.com/
Which flowrates should I use?
Advice on how to find the right flow rates and to to change the droplet size can be found under "Read More".
I only see streaks of fluids but no droplets. How do I get the droplets?
When you only see streaks of fluids its important to decrease your flowrate. Instructions to find the right flow rate can be found under "Read More".
Which surfactants should I use?
Tween 20, Tween 80 and Emulseo FluoSurf™-O surfactant are used in combination with our chips. See "Read More" for details.
How do I prevent clogging of my chips?
Clogging can only be avoided by working as cleanly as possible. Typical sources of particles include: - Dust from the air or open surfaces - Larger particles or other contamination in the fluids - Dried or solidified residues when re-using chips from previous runs - Components within the fluidic setup (e.g., tubing, connectors, reservoirs) - Residual particles remaining after cleaning See “Read More” for detailed advice on minimizing these risks.
Should I use coated or uncoated droplet generators?
For water-in-oil droplets, use droplet generators with a hydrophobic coating.For oil-in-water droplets, no additional coating is needed. Below more details on surface wetting properties are explained.Surface wetting propertiesThe contact angle between the fluid and the droplet generator surface is key for defining the stability of the wetting of the continuous phase. If the wetting is more preferential for the dispersed phase, pinning of the droplets to the channel can occur. The standard uncoated droplet generators of Micronit are glass based, thus hydrophilic and are suitable for making organic droplets in an aqueous phase (oil-in-water droplets). It is possible for Micronit to provide a coating which renders the surface of the droplet generators hydrophobic, thus suitable for making aqueous droplets in an organic phase (water-in-oil droplets). This coating is based on a fluorinated polymer and ensures the coated surface has a contact angle of more than 90° with water.
Can this flow cell be customized?
Absolutely! Micronit is a key supplier for flow cells in the Next Generation Sequencing market and can manufacture flow cells competely according to your specific requirements.  What can be customized? The channel shape. The channel height and width. For wet etching its important to consider that channel height and minimal channel width are related.{minimal channel width} = 2 * {etch depth} + {initial mask opening, typcial 5-10µm} Larger aspect ratios (relation between channel depth and width) are possible using dry etching. For this, a glass/silicon combination is most common. Choice of material. For instance, fused silica is a good option when UV light is used. Schott D263 bio can be a good alternative for some specific fluorescent labels.  Surface flatness. We can provide ultra flat surfaces.
I have a Elveflow OB1 pressure based pump what connectors do I need?
You need a combination of items supplied by Elveflow and Micronit. Please take a look at the full answer for more details.
I have a Fluigent pressure based pump, what connectors do I need?
See "Read More" for advice.
What's important in selection of a suitable microscope objective?
The objective working distance is a critical parameter for selection of an objective. See "Read More" for recommendations.
Would you like to submit a question? Please login first.
Copyright © 2020-present Micronit B.V. All rights reserved.