Publication: Controlled and tunable polymer particles' production using a single microfluidic device

Amoyav, Benzion, and Ofra Benny "Controlled and tunable polymer particles’ production using a single microfluidic device." Applied Nanoscience (2018): 1-10.

Abstract

Microfluidics technology offers a new platform to control liquids under flow in small volumes. The advantage of using smallscale reactions for droplet generation along with the capacity to control the preparation parameters, making microfluidic chips an attractive technology for optimizing encapsulation formulations.

However, one of the drawbacks in this methodology is the ability to obtain a wide range of droplet sizes, from sub-micron to microns using a single chip design. In fact, typically, droplet chips are used for micron-dimension particles, while nanoparticles’ synthesis requires complex chips design (i.e., microreactors and staggered herringbone micromixer).

Here, we introduce the development of a highly tunable and controlled encapsulation technique, using two polymer compositions, for generating particles ranging from microns to nano-size using the same simple single microfluidic chip design. Poly(lactic-co-glycolic acid) (PLGA 50:50) or PLGA/polyethylene glycol polymeric particles were prepared with focused-flow chip, yielding monodisperse particle batches.

We show that by varying flow rate, solvent, surfactant and polymer composition, we were able to optimize particles’ size and decrease polydispersity index, using simple chip designs with no further related adjustments or costs. Utilizing this platform, which offers tight tuning of particle properties, could offer an important tool for formulation development and can potentially pave the way towards a better precision nanomedicine.

Keywords: Microfluidics · Nanoparticles · Microparticles · Polymeric particles · Focused flow

Would you like to submit a question? Please login first.
Copyright © 2020-present Micronit B.V. All rights reserved.